If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4a^2=180
We move all terms to the left:
4a^2-(180)=0
a = 4; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·4·(-180)
Δ = 2880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2880}=\sqrt{576*5}=\sqrt{576}*\sqrt{5}=24\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24\sqrt{5}}{2*4}=\frac{0-24\sqrt{5}}{8} =-\frac{24\sqrt{5}}{8} =-3\sqrt{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24\sqrt{5}}{2*4}=\frac{0+24\sqrt{5}}{8} =\frac{24\sqrt{5}}{8} =3\sqrt{5} $
| 7(7x+11)=518 | | -4(3u-1)+6u=2+2(2u-8) | | w^-3w=350 | | (-8+k)^3=1 | | 96=6(2m+6) | | -2(8x-5)=90 | | (137-2x)(5x)+25=180 | | 26+m=36 | | -48=-6(m+4) | | 10(9+n)=220 | | 1/3x-9=-7 | | s/120=1.5 | | 2(2p+3)=18 | | 2(2p-3)-18=0 | | (x-6)^2=2x^2-8x+24 | | 3w2-60w+300=0 | | (3x+23)+(4x+1)=180 | | 3w^-60w+300=0 | | (3x+23)=(4x+1) | | (3x+23)+4x+4=180 | | (3x+23)+4=90 | | (3x+23)+4x=180 | | (3x+23)=4 | | 36s^2=16 | | (4x+54)=(3x+77) | | (3x+77)=(4x+54) | | 4^x=16^3.4 | | (4x+8)=64 | | (3x-5)+92=180 | | 92=(3x-5) | | (3x-5)=92 | | X/22x-68=12+2x |